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Abstract

Calculations can naturally be described as graphs in which vertices represent
computation and edges reect data dependencies. By partitioning the vertices of
a graph, the calculation can be divided among processors of a parallel computer.
However, the standard methodology for graph partitioning minimizes the wrong
metric and lacks expressibility. We survey several recently proposed alternatives
and discuss their relative merits.

1 Introduction

Graphs are widely used to describe the data dependencies within a compu-
tation. Recall that a graph, G = (V;E), consists of a set of vertices, V =
fv1; v2; : : : ; vng, and a set of pairwise relationships, E � V � V , called edges.
If (vi; vj) 2 E, then we say that vertices vi and vj are neighbors. For our pur-
poses, the vertices of the graph will represent units of computation, and the
edges will encode data dependencies. Sometimes it is appropriate to associate
weights with the nodes and/or edges of the graph to indicate the amount of
work and/or data, respectively.
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For example, di�erential equations are usually solved numerically on a grid.
During each iteration in the process towards a solution, all the grid points are
updated using neighboring values in the mesh. In Fig. 1 we show the mesh
and an associated data dependency graph for a symmetric 7-point stencil.
Here each vertex in the graph at right represents the computation to update
the associated point on the grid. Each vertex has edges connecting it to the
vertices from which it needs information. Outputs from one iteration serve as
inputs for the next.

Fig. 1. Grid, Stencil, and Graph.

Once we have a graph model of a computation, graph partitioning can be
used to determine how to divide up the work and data for an e�cient parallel
computation. Our objectives, stated loosely, are to evenly distribute the com-
putations over p processors by partitioning the vertices into p equally weighted
sets while minimizing interprocessor communication which is represented by
edges crossing between partitions.

It is this simple relationship between graphs and computations which explains
the ubiquity of graph partitioning in parallel computing. Graph partitioning
is universally employed in the parallelization of calculations on unstructured
grids including �nite element, �nite di�erence and �nite volume techniques
using both explicit and implicit methods. It is used in the parallelization of
matrix-vector multiplication for all types of iterative solvers. It is also used
to parallelize neural net simulations, particle calculations, circuit simulations,
and a variety of other computations.

Until recently only the standard graph partitioning approach has been em-
ployed. The standard approach is to model the problem using a graph as
described above and partition the vertices of the graph into equally weighted
sets in such a way that the weight of the edges crossing between sets is min-
imized. Well-known software packages such as Chaco [13] and METIS [19]
can be used for this purpose. Note that the graph partitioning problem is
NP-hard [9], so these tools merely apply heuristics to generate approximate
solutions.

Unfortunately, the standard graph partitioning approach has several signi�-
cant shortcomings which are discussed in detail in x2. The edge cut metric
that it tries to minimize is, at best, an imperfect model of communication in

2



a parallel computation. The model also su�ers from a lack of expressibility
which limits the applications it can address.

This paper is an extension of and an elaboration upon Hendrickson's critique
of the standard partitioning model [10]. Whereas Hendrickson restricted his
concerns to matrix-vector products, in the current paper we show that the
same issues plague virtually all applications of graph partitioning to parallel
computation. In x3 we survey some recent work on alternative models which
address some of the limitations of the standard approach. We follow with a
brief discussion of algorithms in x4, and suggest some fertile areas for further
research in x5.

2 Shortcomings of the Standard Graph Partitioning Approach

We discuss several shortcomings of the standard graph partitioning approach.
We begin with aws associated with using the edge cuts metric (x2.1) and
continue with limitations of the standard graph model (x2.2).

2.1 Flaws of the Edge Cut Metric

Minimizing edge cuts has several major aws. First of all, although it is not
widely acknowledged, edge cuts are not proportional to the total communi-
cation volume. The scenario is illustrated in Fig. 2. The ovals correspond to
di�erent processors among which the vertices of the graph are partitioned.
Assume that each edge has a weight of two corresponding to one unit of data
being communicated in each direction. So the weight of the cut edges is ten.
However, observe that the data from node v2 on processor P1 need only be
communicated once to processor P2; similarly with nodes v4 and v7. Thus,
the actual communication volume is only seven. In general, the edge cut met-
ric does not recognize that two or more edges may be representing the same
information ow, so it over counts the true volume of communication.

v1
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v3

v4
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v7
v8

P1

P2

P3

Fig. 2. Edge cuts versus communication volume
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Secondly, the time to send a message on a parallel computer is a function
of the latency (or start-up time) as well as the size of the message. Graph
partitioning approaches try to (approximately) minimize the total volume,
but not the total number of messages. Depending on the machine architecture
and problem size, message latencies can be more important than message
volume.

Thirdly, the performance of a parallel application is generally limited by the
slowest processor. Even if the computational work is well balanced, the com-
munication e�ort might not be. So, rather than minimizing the total commu-
nication volume or even the total number of message, we may instead wish to
minimize the maximum volume and/or number of messages handled by any
single processor. The standard edge cuts measure does not encapsulate this
type of objective.

Lastly, on many architectures the time to send a message depends upon the
distance between the sending and receiving processors. Geographic distance
is not the issue here, but rather the number of switches the message is routed
through. Although most modern machines have some form of cut-through or
wormhole routing which enables a single message to travel quickly between
distant processors, the communication network is usually handling many mes-
sages simultaneously. A message between distant processors ties up many wires
which cannot be used by other messages. So to avoid message contention and
improve the overall throughput of the message tra�c, it is preferable to have
communication restricted to processors which are near each other. So, for the
problem illustrated in Fig. 2, on a one-dimensional row of processors, the
layout P3 � P1 � P2 would be preferable to P1 � P2 � P3.

In actuality, we are interested in all of these metrics to varying degrees, de-
pending on how they a�ect the overall speed of the application. So we will
likely want to minimize an objective function with several components (e.g.,
total volume and total number of messages), weighted to reect the importance
of each measure. In even more complicated settings, we may wish to balance
the sum of the computational and communications work on each processor
while minimizing these combined objectives.

Despite these problems with the edge cut measure, the standard partitioning
approach has proved successful for the parallel solution of di�erential equa-
tions and grid-based problems in general. There are several reasons for this
success. First, grid points generally have only a small number of neighbors, so
the number of edge cuts is within a small multiple of the actual communication
volume. This is not true of more general problems with more complex data
dependencies. Second, computational grids generally exhibit a high degree of
geometric locality which ensures that good partitions exist [26]. If the grid
size, n, is increased while the number of processors is held �xed, the ratio of
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communication volume to computational work grows as n�1=3 in three dimen-
sions and n�1=2 in two dimensions. Similarly, geometric locality ensures that
the number of messages each processor sends is bounded. Lastly, the commu-
nication volume per processor is fairly evenly distributed since there usually
is not an enormous di�erence in the size of the boundary of each piece of the
grid. For all these reasons large grid computations tend to be limited by com-
putational performance, so the details of the communication (and hence the
partition) are not critical. For other applications with more complex depen-
dency patterns the quality of the partition can have a much more dramatic
impact on overall performance.

2.2 Limitations of the Standard Graph Model

Besides minimizing the wrong objective function, the standard graph parti-
tioning approach su�ers from limitations due to the lack of expressibility in
the model.

One limitation of the undirected graph model is that it can only express sym-
metric data dependencies. For example, the graph associated with a symmetric
matrix is shown in Fig. 3. For the computation y = Ax, vertex vi is associated
with the computation of the inner product between row i of the matrix A

with the vector x. Observe that the edge between node v1 and v2 symbolizes
a symmetric dependency: v1 needs x2, and v2 needs x1.
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Fig. 3. Graph of a Symmetric Matrix

However, if the matrix is square but unsymmetric, then the dependencies are
unsymmetric as well: v1 might need x2, while v2 does not need x1. This sit-
uation can be easily represented in a directed graph, but not in the standard
model. In a directed graph, edges are directed from the data producing ver-
tex to the data consuming vertex. There are two work-arounds to make the
standard model `�t' unsymmetric dependencies. The �rst is to convert the di-
rected edges to undirected edges. The second is a slight extension of the �rst;
an edge that represents only a one-way communication gets a weight of one,
and an edge that represents two-way communication gets a weight of two.
Unsymmetric dependencies show up in other settings as well. For example,
ow calculations often involve unsymmetric stencils as depicted in Fig. 4.

5



Fig. 4. Grid, Stencil, and Directed Graph.

Secondly, the symmetric model forces the partition of the input and output
data to be identical. This is often desirable, particularly when the output from
the previous computation is the input to the next computation. But in many
situations it is an unnecessary restriction. For instance, the standard model
generates the identical partitions of x and y when computing y = Ax for a
square matrix. For unsymmetric matrices, communication may be reduced by
allowing the two partitions to di�er. For example, The input x may be the
result of a previous two-part operation which �rst computes y = Ax and then
z = ATy; this e�ectively maps from x-space to y-space and back to x-space.
(The data layout and communication for application of A and AT is identical;
see [12]). This brings us to the last two important issues.

The third limitation of the standard model is that it assumes that the input
and output of the calculation are the size. For example, when A is rectangular
in the calculation of y = Ax, the x- and y-spaces are of di�erent dimensions.
Recall that the standard model handles symmetric matrix-vector multiplica-
tion (y = Ax) by having a single vertex vi represent both xi and yi. When the
matrix is not square, x and y are of di�erent lengths, and the standard model
is inapplicable.

Lastly, even within the general framework of calculations which are repeated
over and over again, it is common for the calculation to consist of several
distinct phases. Examples include the application of a matrix and a precon-
ditioner in an iterative method, solving a di�erential equation and applying
boundary conditions, simulating di�erent phenomena in a multi-physics cal-
culation, and advancing a grid and detecting contacts in a transient dynamics
computation. The union of multiple phases cannot generally be described via
an undirected graph. As we will see in the next section, some alternatives to
the standard model retain its basic simplicity while enabling some of these
more complex situations to be handled.
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3 Alternative Graph Partitioning Models

Some of the shortcomings of the standard graph partitioning model can be
addressed by using recently developed alternatives. We describe four such
non-standard models below.

3.1 A Bipartite Graph Model

As we noted in x2.2, the standard model using an undirected graph can only
encode symmetric data dependencies and symmetric partitions. These lim-
itations are particularly problematic for iterative solvers on unsymmetric or
non-square matrices. When using preconditioners, the inability of the standard
model to capture multiple phase calculations are also problematic. In [11,12,23]
Kolda and Hendrickson propose a bipartite graph model for describing matrix-
vector multiplication which addresses some of these shortcomings. The bipar-
tite model can also be applied to other applications involving unsymmetric
dependencies and multiple phases.

A bipartite graph, G = (V1; V2; E), is a special type of graph in which the
vertices are divided into two disjoint subsets, V1 and V2, and E � V1�V2. So,
no edges connect two vertices in the same subset; instead, all the edges cross
between V1 and V2.

This bipartite graph representation is most useful when the initial tasks are
logically distinct from the �nal tasks. This occurs in the transfer between
phases of the multi-phase calculations described in x2.2. An important example
is matrix-vector multiplication with non-square matrices. Fig. 5 shows the
bipartite graph representation of a rectangular matrix. Here, the sets V1 and
V2 correspond to the row and column vertices respectively. Each row vertex
in V1 is weighted with the number of nonzeros in its row; e.g., row vertex r4
has a weight of one. This weighting reects the computational work required
in the matrix-vector product. Whichever processor owns vertex ri will own
the piece yi of the resulting solution vector y = Ax. The partitioning of the
column vertices (V2) a�ects the layout of the input vector, x. The column
vertices may be left unweighted so that x may be partitioned in the optimal
way to minimize edge cuts. Better yet, the column vertices may be weighted
to distribute the computation of another operation on the input data such
as level-1 BLAS operations or multiplication by another matrix such as a
preconditioner in an iterative method.

The bipartite graph model is useful principally where the standard model
fails to be a good representation, and it has three main advantages. First,
it can encode a class of problems that the standard graph model cannot.
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Fig. 5. Rectangular Matrix and Bipartite Graph.

Speci�cally, the initial (or input) vertices can be di�erent from the �nal (or
output) vertices. Second, even if the initial vertices are identical to the �nal
vertices, the bipartite model allows for the initial partition to di�er from the
�nal partition. It achieves this by representing each vertex twice, once as an
initial vertex and once as a �nal vertex. This freedom can allow for a reduction
in communication. However, in many applications a symmetric partition is
preferable, and this model cannot provide that. Third, by partitioning both
the initial and the �nal vertices, it can ensure load balance in two separate
operations, as mentioned above.

Although the bipartite model has expressibility that the standard model lacks,
the algorithms in [12] still optimize the awed metric of edge cuts (as well as
sharing the other problems of the standard model described in x2.1). As we
will see in the next section, this problem can be addressed by optimizing a
graph quantity other than cut edges.

Although the bipartite model is good for describing two computational oper-
ations, it is not able to accurately encode more. One possible generalization
is to use a k-partite graph in which the �rst set of vertices is connected to a
second set, which is connected to a third set, and so on. An alternative is the
multi-constraint methodology described below in x3.3.

3.2 A Hypergraph Model

Recall that edge cuts are not equal to communication volume, as illustrated
in Fig. 2. In the �gure, vertex v2 on processor P1, for example, has two edges
connecting to vertices on processor P2, but v2 need only be communicated
once. The true communication volume is not a function the number of edges
being cut, but rather the sum of the number of processors to which each vertex
has connections. More formally, the total communication volume is

P
i bi where

bi is the number of external partitions in which vertex vi has neighbors. We
will call this quantity the boundary cut of a partition. The observation that
boundary cuts are the more appropriate metric was made in [10] and motivated
a modi�cation in METIS to minimize this more accurate metric [17]. Boundary
cuts can also be employed in the bipartite graph model from x3.1.
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A more elegant expression of this metric is in the hypergraph model proposed
by C�ataly�urek, Aykanat, Pinar, and Pinar [3,4,25]. A hypergraph is a gener-
alization of a graph in which edges can include more than two vertices. A
hypergraph, G = (V;H), consists of a set of vertices, V , and a set of hyper-
edges, H. Each hyperedge comprises a subset of vertices. Note that graphs
are special cases of hypergraphs in which each hyperedge only contains two
vertices. For our purposes, a hyperedges allow an alternative representation of
the data dependencies. The partitioning problem is now to divide the vertices
into equally weighted sets so that few hyperedges cross between partitions.

As we will discuss below, the hypergraph model has broader applicability
than the standard approach. But even for problems that can be described
with the standard model, the hypergraph model is preferable since it correctly
minimizes the communication volume. To see this, consider a computation like
the one in Fig. 2 which can be describe by a standard undirected graph G =
(V;E). Now construct an equivalent hypergraph (V;H) with jV j hyperedges.
Each vertex vi G, corresponds to a hyperedge hi consisting of vi and all its
neighbors in G. A hyperedge reects all of the entities that either produce or
consume a piece of data. When the vertices are partitioned among processors,
that piece of data must be communicated from the processor which produced
it to to all those consume it. Thus, the communication associated with a
hyperedge is one less than the number of processors its constituent vertices
are partitioned among. (This corresponds to the boundary cut value from
the discussion above.) So by partitioning the hypergraph in such a way that
hyperedges are split among as few processors as possible, the model correctly
minimizes communication volume.

In [4], C�ataly�urek and Aykanat apply this model to symmetric matrix-vector
multiplication. For a set of highly unstructured matrices from linear program-
ming problems they report that the hypergraph model reduces communication
by over 30% on average over the standard partitioning approach. However, for
reasons discussed in x2.1, the gains were more modest for matrices from grid
calculations, generally less than 10% [1].

In addition to resolving the principle problem of the edge cut metric, the
hypergraph approach is more expressive than the standard model. It can en-
code problems in with unsymmetric dependencies and even problems in which
the initial vertices di�er from the �nal vertices. In Figure 6, we show two
di�erent sketches of a hypergraph relating the data dependencies for the rect-
angular matrix-vector multiply in Fig. 5. For example, hyperedge h2 contains
all the vertices that need x2, i.e., fv2; v4g. In the left �gure the hyperedges
are illustrated by the ovals. In the right �gure the vertices are on one side
and hyperedges on the other, and each hyperedge is connected to the vertices
which comprise it. We include this second hypergraph representation to un-
derline the one-to-one relationship between hypergraphs and bipartite graphs.
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The hypergraph partitioning model is closely related to the bipartite model
from x3.1, but the partitioning objectives are di�erent.
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Fig. 6. Two Hypergraph Representations.

The guiding principle in the construction of a hypergraph is that each hyper-
edge contains the set of vertices which generate or need some data. This prin-
ciple applies equally well to the case when dependencies are uni-directional,
and it continues to correctly model the communication volume. However, there
is a subtle requirement that the data is produced by one of the vertices that
depends on it. For example, in Fig. 6 we assume that the data associated with
hyperedge h1 will live on the processor that owns vertex v5. If that is not the
case for some reason, e.g., h1 is the output of v1, then h1 should also include
its producing vertex, e.g., v1.

The hypergraph model can also be used even in cases where the input and
output data partitions are not identical, although it is perhaps not as nat-
ural as the bipartite model in this case. We simply �nd the best partition
for the computation nodes using a hypergraph partitioner, and this yields a
partition of the output data. Then, rather than assuming the input data has
the same partition as the output data, we can calculate the optimal input
data partitioning as an assignment problem. So, the hypergraph model can be
an alternative to the bipartite model when we are only encoding one opera-
tion; however, the bipartite (or k-partite) models are still best when encoding
multi-step operations.

In summary, we �nd the hypergraph model to be uniformly superior to the
standard model. It is also an attractive alternative to the bipartite model
for unsymmetric problems when only one operation is being encoded. How-
ever, the bipartite (or k-partite) models are still more powerful when encod-
ing multi-phase operations. This is particularly true when the bipartite model
minimizes the boundary cut value as discussed above.

3.3 Multi-Constraint Partitioning

The bipartite model from x3.1 is able to describe some types of multi-phase cal-
culations. An alternative approach is the multi-constraint partitioning model
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of Karypis and Kumar [21]. Strictly speaking, the multi-constraint approach is
not an alternative to other models but rather an augmentation. In the multi-
constraint model, each vertex is assigned a vector of k weights which represent
the work associated with that vertex in each of k computational phases. The
goal is now to partition the vertices of that graph in such a way that commu-
nication is minimized and that the each of the k weights is balanced. In this
way, each phase of the computation will be load balanced. The edges in the
graph represent data dependencies in all the computational phases.

This is a very general and powerful model. For instance, when solving a di�er-
ential equation and also applying boundary conditions, each vertex can have
two weights. The �rst weight will reect the work required by a grid point
in the solver, and the second can encode the work required for the boundary
condition. For vertices not on the boundary, the value of the second weight
will be zero. So partitioning this problem will ensure that the equation solver
is balanced in such a way that each processor has an equal fraction of the
surface vertices.

The multi-constraint model includes the bipartite (and k-partite) approaches
as a special case. Given a bipartite graph G = (V1; V2; E), an equivalent multi-
constraint model would have a set of vertices V = V1 [ V2, and and edges
identical to those in the bipartite graph. Each vertex would be assigned two
weights, one for the phase modeled by V1 and the second for the phase modeled
by V2. Hence, each vertex would have one of its weights set to zero. More
generally, the multi-constraint model can encode multiple phases with distinct
vertices via a model in which it includes the union of all vertices in all phases.

As originally proposed by Karypis and Kumar, the multi-constraint model
attempts to minimize edge cuts, but this is an unnecessary restriction. Hyper-
edges could be used or, equivalently, the boundary cut value from x3.2.

Although the power of the model is attractive, partitioning general multi-
criteria problems is di�cult. When other, simpler models can be applied, they
may be easier to work with.

3.4 Skewed partitioning

Yet another alternative to the standard partitioning model is the skewed par-
titioning partitioning approach developed by Pellegrini [24] and Hendrickson,
Leland and Van Driessche [15]. As with the multi-constraint model, skewed
partitioning is really an augmentation of any of the other graph partitioning
models rather than a true alternative. In the skewed model, each vertex is
allowed to have a set of k preference values expressing its respective desire to
be in each of the k sets. When determining how to partition the vertices, these
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preference values are considered along with the metrics of communication cost.

Preference values can be used in several di�erent ways to achieve di�erent
objectives. In dynamic load balancing it is desirable that the new partition
be similar to the existing one to limit the amount of data that needs to be
moved. This can be encoded in the preference values by giving each datum
a preference to remain in its current partition [27]. The magnitude of the
preference values can be adjusted to trade o� between partition quality and
reduction in data movement.

Another use for preference values is to encourage communicating objects
to be assigned to architecturally close processors to reduce message conges-
tion [24,15]. Assume you partitioning for p processors by recursive application
of a k-way partitioner. After the �rst partition, the graph is divided into k

parts which are assigned to k portions of the parallel machine. When doing
subsequent partitions, each vertex can be assigned a preference to be assigned
to a portion of the machine which is near its neighbors. In this way, the parti-
tioning step is coupled with the problem of assigning partitions to processors.
The result is a partition which exhibits better message locality. As before,
the magnitude of the preferences can be altered to trade o� between partition
quality and message locality.

This same idea was developed independently in the circuit placement com-
munity to place circuit elements on a chip with short overall wire lengths [7].
Several algorithms for this problem have been devised including multilevel and
spectral approaches [15].

4 Partitioning Algorithms

The di�erent graph partitioning models reviewed in x3 are only viable if ef-
�cient and e�ective algorithms can be developed to partition them. Fortu-
nately, the multilevel paradigm for partitioning has proven to be quite robust
and general. The multilevel approach was devised independently by several
researchers in the early 90s [2,6,14] and popularized by the the Chaco [13] and
METIS [19] partitioning tools. The basic idea is quite simple. A large graph is
approximated by a sequence of smaller and smaller graphs. The smallest graph
is partitioned using any suitable algorithm. This partition is then propagated
back through the sequence of larger and larger graphs, being re�ned along the
way.

Adapting the multilevel approach to a particular partitioning problem requires
the following tools.
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(1) A method for generating a sequence of smaller graphs which preserve the
essential properties of the original.

(2) An algorithm for partitioning the smallest graph.
(3) A re�nement technique for improving the partition as it is propagated

back up to the original graph.

These tools are generally straightforward to devise; however, the precise de-
tails of these tools require some attention to the nature of the partitioning
problem being addressed. The generation of smaller graphs is typically done
with some kind of edge contraction scheme. Any existing algorithm which
handles weights on edges and vertices can be used to partition the small-
est graph. The re�nement often involves a greedy algorithm in the spirit of
Kernighan-Lin [22].

Following the multilevel paradigm, e�cient and e�ective partitioners have
been developed for partitioning graphs to minimize edge cuts [2,14], minimize
vertex cuts [16], and perform multi-constraint partitioning [21]. The same
approach has been successfully used to partition hypergraphs to minimize cut
hyperedges [6,18,5] and to partition bipartite graphs [12]. The exibility of
the technique makes it well suited to address a range of di�erent partitioning
models and metrics.

5 Conclusions and Directions for Further Research

In many respects, those of us working in the partitioning �eld have been
fortunate. The dominant application for our algorithms and tools has been
di�erential equation solvers. Whether solved implicitly or explicitly, these ap-
plications produce dependency graphs which are fairly easy to partition, and
large problems are computation rather than communication bound. The ap-
plications achieved good parallel performance despite the limitations of our
approaches.

But di�erent applications are becoming common which are much more sen-
sitive to partition quality. Challenging partitioning problems that arise from
interior point methods for linear programming, least squares problems, circuit
simulation, truncated singular value computations for latent semantic indexing
in information retrieval, and other applications are revealing the limitations
of our traditional approaches. The standard graph partitioning methodology
optimizes an inappropriate quantity, and its expressibility is too limited to
address some important classes of applications.

We surveyed several alternative models which address some of the problems
with the standard methodology. The bipartite model and the hypergraph
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model can both handle unsymmetric dependencies. The hypergraph approach
correctly encodes communication volume, while the bipartite model and its
k-partite generalization have the advantage of being able to represent some
multi-phase calculations. The multi-constraint approach o�ers an alternative
way to represent multiple phases, while the skewed partitioning model pro-
vides a mechanism for including extra information in a partitioning problem
to, for example, reduce message congestion. However, these new models only
start to address the problems detailed in x2. A number of important open
problems remain, including the following.

(1) Partitioning for alternate objectives or multi-objectives. Mod-
els which are well suited to minimizing the number of messages or the
maximum communication per processor instead of the total communi-
cation are still needed. Of further value would be hybrid models which
encapsulate several metrics. New partitioning metrics may lead to new
algorithmic challenges.

(2) Partitioning for alternative architectures.Most of the work in parti-
tioning techniques have been motivated by distributed memory architec-
tures and has tried to minimize interprocessor communication. Similar,
but not identical, issues occur in shared memory machines (SMPs). It is
advantageous to partition the shared memory between the processors to
minimize cache coherence overhead. However, the precise objectives in
the shared memory setting may di�er from those for distributed memory
machines. There is little published work on this problem.
Other architectural trends pose di�erent challenges for partitioners.

One important development is the growing importance of heterogeneous
machines. Many current parallel machines consist of a collection of shared
memory nodes networked together. These machines exhibit signi�cant
network heterogeneity. Accesses within an SMP are fast, but between
SMPs are slow. It is unclear how best to partition for these architectures.
Another important architectural development is the growing popular-

ity of build-it-yourself parallel computers, epitomized by Beowulf-class
machines. Machines built in this way can exhibit both network and pro-
cessor heterogeneity. The partitioner will need to worry about di�ering
processor speeds and memory sizes, as well as varying access times. Ap-
propriate machine models and partitioning approaches for heterogeneous
architectures is largely an untouched area.

(3) Parallel partitioning. Most of the work on parallel partitioning has
been done in the context of dynamic load balancing. Algorithmically, dy-
namic load balancing is more challenging than the problems we have been
discussing since there is a pre-existing partition. If the new partition de-
viates signi�cantly from the current one, then a large remapping cost is
incurred. This consideration does not occur in static settings and compli-
cates the evaluation of dynamic partitioning algorithms. Independent of
dynamic problems, several trends are increasing the need for parallel par-
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titioners. First is the interest in very large meshes, which will not easily
�t on a sequential machine and so must be partitioned in parallel. Second,
for a more subtle reason, is the growing interest in heterogeneous parallel
architectures. Generally, partitioning is performed as a preprocessing step
in which the user speci�es the number of processors the problem will run
on. With heterogeneous parallel machines, the number of processors is
insu�cient | the partitioner should also know their relative speeds and
memory sizes. A user will want to run on whatever processors happen to
be idle when the job is ready, so it is impossible to provide this informa-
tion to a partitioner in advance. A better solution is to partition on the
parallel machine when the job is initiated. A number of parallel parti-
tioners have been implemented including Jostle [28] and ParMETIS [20].
This is an active area of research.

(4) Partitioning for domain decomposition. Domain decomposition is
a numerical technique in which a large grid is broken into smaller pieces.
The solver works on individual subdomains �rst, and then couples them
together. The properties of a good decomposition are not entirely clear,
and they depend upon the details of the solution technique. But they
are almost certainly not identical to the criteria used to minimize par-
allel communication. For instance, Farhat, et al. [8] argue that the do-
mains must have good aspect ratios (e.g., not be long and skinny). It can
also be important that subdomains are connected, even though the best
partitions for parallel communication need not be. For the most part,
practitioners of domain decomposition have made due with partitioning
algorithms developed for other purposes, with perhaps some minor per-
turbations at the end. But a concerted e�ort to devise schemes which meet
the need of this community could lead to signi�cant advances. Progress
in this area will probably require a combination of ideas from numerical
analysis and graph algorithms.

Despite the general feeling that partitioning is a mature area, there are a
number of open problems and many opportunities for signi�cant advances in
the state of the art. We expect to see a continuing stream of new insights
and approaches which more closely �t the di�erent classes of applications. As
the hegemony of the standard approach crumbles, we foresee a balkanization
of the partitioning �eld as di�erent researchers choose to work on di�erent
models and applications. This is a positive development to the extent that
this more focused work leads to better tools for speci�c applications.
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